Binary Search Trees

Part Two



Outline for Today

 Freeing Trees

* Cleaning up our messes.
* Balanced Trees

« How fast are BST operations?
* Range Searches

* A useful hybrid algorithm.



Recap from Last Time



Binary Search Trees

« The data structure we have
just seen is called a binary
search tree (or BST). G

« The tree consists of a
number of nodes, each of

which stores a value and e 9
has zero, one, or two

children.
« All values in a node’s left a @\' a

subtree are smaller than

the node’s value, and all @
values in a node’s right

subtree are greater than

the node’s value.



A Binary Search Tree Is Either..
an empty free,
represented by ®
nullptr, Or..

. and whose right
subTree is a BST
ot larger values,

. a single node,
whose lett subtree
is a BST of

smaller values ..




New Stuff!



Getting Rid of Trees




Freeing a Iree

e Once we're done with a tree, we need to free
all of its nodes.

 As with a linked list, we have to be careful not
to use any nodes after freeing them.



A Binary Search Tree Is Either..
an empty free,
represented by ®
nullptr, Or..

. and whose right
subTree is a BST
ot larger values,

. a single node,
whose lett subtree
is a BST of

smaller values ..




vold deleteTree(Node* root) {
if (root == nullptr) return;

delete root;
deleteTree(root->left);
deleteTree(root->right);

}

vold deleteTree(Node* root) {
if (root == nullptr) return;

deleteTree(root->left);
delete root;
deleteTree(root->right);

}

vold deleteTree(Node* root) {
if (root == nullptr) return;

deleteTree(root->left);
deleteTree(root->right);
delete root;

}

vold deleteTree(Node* root) {
if (root == nullptr) return;

delete root;
deleteTree(root->right);
deleteTree(root->left);

}

vold deleteTree(Node* root) {
if (root == nullptr) return;

deleteTree(root->right);
delete root;
deleteTree(root->left);

}

vold deleteTree(Node* root) {
if (root == nullptr) return;

deleteTree(root->right);
deleteTree(root->left);
delete root;

}

Which of these options work?
Answer at https://pollev.com/cs106bwin23



https://pollev.com/cs106bwin23

vold deleteTree(Node* root) {
if (root == nullptr) return;

delete root;
deleteTree(root->left);
deleteTree(root->right);

}

vold deleteTree(Node* root) {
if (root == nullptr) return;

deleteTree(root->left);
delete root;
deleteTree(root->right);

}

vold deleteTree(Node* root) {
if (root == nullptr) return;

deleteTree(root->left);
deleteTree(root->right);
delete root;

}

vold deleteTree(Node* root) {
if (root == nullptr) return;

delete root;
deleteTree(root->right);
deleteTree(root->left);

}

vold deleteTree(Node* root) {
if (root == nullptr) return;

deleteTree(root->right);
delete root;
deleteTree(root->left);

}

vold deleteTree(Node* root) {
if (root == nullptr) return;

deleteTree(root->right);
deleteTree(root->left);
delete root;

}

Which of these options work?
Answer at https://pollev.com/cs106bwin23



https://pollev.com/cs106bwin23

vold deleteTree(Node* root) {
if (root == nullptr) return;

deleteTree(root->left);
deleteTree(root->right);

delete root; /
}

vold deleteTree(Node* root) {
if (root == nullptr) return;

deleteTree(root->right);
deleteTree(root->left);

delete root; /
}

Which of these options work?
Answer at https://pollev.com/cs106bwin23



https://pollev.com/cs106bwin23

Postorder Traversals

* The particular recursive pattern we just saw is
called a postorder traversal of a binary tree.

» Specifically:

« Recursively visit all the nodes in the two subtrees,
in whichever order you’d like.

e Visit the node itself.

 This contrasts with the inorder traversal we
used to print the contents of a BST.

 That’s where we recursively visit the left subtree,
then the node itself, then the right subtree.



Tree Efficiency




How fast are BST lookups?

How fast are BST insertions?



Tree Terminology

 The height of a tree is the number of links
in the longest path from the root to a leatf.

1 @ B (1) [ee
S fwo




Tree Terminology

* The height of a tree is the number of links
in the longest path from the root to a leatf.

Height
SIX



Tree Terminology

* The height of a tree is the number of links
in the longest path from the root to a leatf.

Height
2er0




Tree Terminology

* The height of a tree is the number of links
in the longest path from the root to a leatf.

By convention, an empty tree has height -1.

Height
| —1 I




Building a BST

* First, draw the BST formed by inserting the values
1, 3, 5,7, 2, 4, 6 into an empty tree.

 Then draw what you get if you insert the values
4,06, 5, 2,1, 7, and 3 into an empty tree.

Draw these trees. What is the
height of each tree?

Answer at
https://pollev.com/cs106bwin23



https://pollev.com/cs106bwin23

Building a BST

« First, draw the BST formed by inserting the values
1, 3, 5,7, 2, 4, 6 into an empty tree.

 Then draw what you get if you insert the values
4,06, 5,2,1, 7, and 3 into an empty tree.

1 4
3 2 6
2 5 1 3 5 7
4 7



Efficiency Questions

 The time to add
an element to a
BST (or look up
an element in a
BST) depends
on the height
of the tree.

e The runtime is

O(h), where h
is the height of
the tree.




Tree Heights

 What is the maximum and minimum possible
height of a tree with n nodes?

« Maximum height: all nodes in a chain. Height
1s O(n).




Tree Heights

« What is the maximum and minimum possible
height of a tree with n nodes?

« Maximum height: all nodes in a chain. Height
1s O(n).

« Minimum height: tree is as complete as
possible. Height is O(log n).
You can only double

a something 0(log n)
fimes before it
e G exceeds n,




Balanced Trees

* A binary search tree is called balanced
if its height is O(log n), where n is the
number of nodes in the tree.

 Balanced trees are extremely efficient:

* Lookups take time O(log n).
* Insertions take time O(log n).
* Deletions take time O(log n).

* Question: How do you balance a tree?



Balanced Trees

* A self-balancing tree is a BST that reshapes itself
on insertions and deletions to stay balanced.

« There are many strategies for doing this. They’'re
beautiful. They're clever. And they’'re beyond the
scope of CS106B.

 Some suggested topics to read up on, if you're
curious:

« Red/black trees (take CS161 or CS166!)
AVL trees (covered in the textbook.)
Splay trees (trees that reshape on lookups.)

Scapegoat trees (yes, that’s what they’re called.)
Treaps (half binary heap, half binary search tree!)



What if you do no balancing at all?



A Tale of Two Trees

 We have a thermometer that gives a temperature
reading at 4PM each day. We insert the
temperature readings into a BST each day,
starting on January 1 and ending on December 31.

« There’s a marathon race. We insert the names of
the athletes into a BST as they cross the finish
line.

Which BST will be more balanced?
Which BST will be less balanced?
Why?

Answer at
https://pollev.com/cs106bwin23



https://pollev.com/cs106bwin23

Temperature readings, inserted
daily at 4PM, from January 1 to
December 31.




Balanced Trees

« Theorem: If you @

start with an empty
tree and add in @ @
random values, then,
with high probability,
the tree is balanced. e @
 Proof: Take CS161!
 Takeaway: If you're O e m @
adding elements to a
BST and their values e e @
are actually random,

then your tree is e
likely to be balanced.



Range Searches




106

103 110
@ 108 @

@ s e 154

Find all elements in this tree in the range [103, 154].



106

103 110
@ 108 @

@ s 154

Find all elements in this tree in the range [99, 105].



106

103 110
@ 108 @

@ s 154

Find all elements in this tree in the range [150, 170].



106

103 110
@ 108 @

@ s 154

Find all elements in this tree in the range [137, 138].



Range Searches

 We can use BSTs to do range searches,
in which we find all values in the BST
within some range.

 For example:

e If the values in the BST are dates, we can
find all events that occurred within some
time window.

o If the values in the BST are number of
diagnostic scans ordered, we can find all
doctors who order a disproportionate
number of scans.



A Binary Search Tree Is Either..

\

. and whose right
subTree is a BST
ot larger values,

an empty Tree,
represenfed by
nullptr, Or..

. a single node,
whose lett subtree
is a BST of

smaller values ..




A Binary Search Tree Is Either..

\

. and whose right
subTree is a BST
ot larger values,

an empty Tree,
represenfed by
nullptr, Or..

. a single node,
whose lett subiree
is a BST of

smaller values ..




A Binary Search Tree Is Either..

\

. and whose right
subTree is a BST
ot larger values,

an empty Tree,
represenfed by
nullptr, Or..

. a single node,
whose lett subiree
is a BST of

smaller values ..




A Binary Search Tree Is Either..

\

. and whose right
subTree is a BST
ot larger values,

an empty Tree,
represenfed by
nullptr, Or..

. a single node,
whose lett subiree
is a BST of

smaller values ..




A Binary Search Tree Is Either..

\

. and whose right
subTree is a BST
ot larger values,

an empty Tree,
represenfed by
nullptr, Or..

. a single node,
whose lett subiree
is a BST of

smaller values ..




Range Searches

* A hybrid between an inorder traversal and a
regular BST lookup!

e The idea:

» If the node is in the range being searched, add it to
the result.

» Recursively explore each subtree that could
potentially overlap with the range.

 Fun fact: The runtime of a range search is
O(h + z), where h is the height of the tree and z
is the number of items in the range. Come chat
with me after class if you’re curious why this is!



To Summarize:



A Binary Search Tree Is Either..
an empty free,
represented by ®
nullptr, Or..

. and whose right
subTree is a BST
ot larger values,

. a single node,
whose lett subtree
is a BST of

smaller values ..




struct Node {
Type value;
Node* left; // Smaller values
Node* right; // Bigger values

s



bool contains(Node* root, const string& key) {
if (root == nullptr) return false;
else if (key == root->value) return true;
else if (key < root->value) return contains(root->left, key);
else return contains(root->right, key);

}

vold insert(Node*& root, const string& key) {
if (root == nullptr) {
root = new Node;
node->value = key;
node->left = node->right = nullptr;
} else if (key < root->value) {
insert(root->left, key);
} else if (key > root->value) {
insert(root->right, key);
} else {
// Already here!
}






void printContentsOf(Node* root) {
if (root == nullptr) return;

printContentsOf(root->left);
cout << root->value << endl;
printContentsOf(root->right);

}

void deleteTree(Node* root) {
if (root == nullptr) return;

deleteTree(root->left);
deleteTree(root->right);
delete root;



void printInRange(Node* tree, const string& low, const string& high) {

if (tree == nullptr) return;

if (high < tree->value) {
printInRange(tree->left, low, high);
} else if (low > tree->value) {
printInRange(tree->right, low, high);
} else {
printInRange(tree->left, low, high);
cout << tree->value << endl;
printInRange(tree->right, low, high);



Your Action Items

* Read Chapter 16.1 - 16.2.
« All about BSTs!
« Work on Assignment 7.

 If you are following our timetable, you’ll have finished the
labyrinth and doubly-linked list warmups and should be in
the middle of Particle Systems now.

« Remember that you can use late days on this assignment
and cannot use them on Assignment 8. Plan accordingly.
- Don’t use late days unnecessarily; that eats into your time for AS8.

- Don’t save your late days “just in case” you need them on A8, since
you can’t use them there.

 Need help? Have questions? Come talk to us in LalR or
during office hours.



Next Time

 Other Binary Trees

e BSTs are wonderful, but other tree
structures with similar shapes exist.

 Huffman Coding

 Practical data compression - with trees!



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

